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SUMMARY

We present a mathematical model for multicomponent gas transport in an anisotropic fuel cell electrode.
The model couples the Maxwell–Stefan equations for multicomponent di�usion along with Darcy’s law
for �ow in a porous medium. The equations are discretized using a �nite volume approach with the
method of lines, and the resulting non-linear system of di�erential equations is integrated in time using
a sti� ODE solver. Numerical simulations are performed to validate the model and to investigate the
e�ect of various parameters on fuel cell performance. Copyright ? 2003 John Wiley & Sons, Ltd.
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volume method; sti� systems

1. INTRODUCTION

Proton exchange membrane (or PEM) fuel cells operate by combining oxygen and hydrogen
in the presence of a platinum catalyst, which generates an electrical current and releases water
as a by-product. A critical component of such fuel cells is the electrode, known in the fuel
cell community as a gas di�usion layer or GDL, which is a very thin layer of porous carbon
�bre paper lying on either side of the membrane. The consumption of reactant gases (H2
and O2) and generation of end products (H2O) create gradients in component concentrations
across the thickness of the paper. Consequently, the �ow of gases in the GDL is governed
by a combination of convection, which governs the motion of the mixture through the porous
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medium, and multicomponent di�usion of the reacting and non-reacting gas species relative
to the convection.
In a previous paper [1], the �rst and second authors developed a mathematical model for

gas transport in PEM fuel cells. The resulting coupled system of non-linear di�usion equations
possesses a convective time scale which is much faster than the di�usive one. This model is
distinguished from similar multicomponent problems appearing in the groundwater transport
and reservoir simulation literature (e.g. [2, 3]) due to the thinness of the domain and the
high porosity of the GDL, which combine to give very di�erent scalings of the solution
variables. The vast majority of other fuel cell models appearing in the literature (e.g. [4, 5])
emphasize the complex coupling between mass, heat, and charge transport among the di�erent
components of a cell, while often simplifying certain aspects of the GDL. We take a di�erent
approach and focus our attention solely on mass transport in the GDL which is known to
be a major factor in�uencing fuel cell performance [6]. This model may also be applied to
other industrial and biological applications in which gas transport takes place across a very
thin porous material, such as kiln drying of wood and humid gas �ow in insulation [7, 8].
In this paper, we present an extension of the two-component model developed in Reference

[1] to gas mixtures containing three components. This is more realistic for our fuel cell
application, where the non-reacting gas components are known to have a signi�cant e�ect
on di�usive transport. We develop a second order numerical scheme using a �nite volume
discretization in space, which requires careful handling of the non-linear, reactive, boundary
conditions in order to maintain full second-order accuracy. This problem is distinguished by
a high level of numerical sti�ness, which requires the use of implicit time-stepping. We
have implemented an implicit, sti� solver based on backward di�erentiation formulas, which
has proven to be very e�ective. We also perform a sensitivity study that identi�es certain
geometrical and operational parameters that are critical to fuel cell performance. In particular,
we study the e�ects of anisotropy and spatial inhomogeneity in the porous electrode material
which arises due to the �brous nature of the carbon �bre paper that makes up the GDL. This
has not been investigated before in the context of fuel cells.

2. MATHEMATICAL MODEL

2.1. Overview of fuel cell physics

A cross-sectional view through a PEM fuel cell is depicted in Figure 1. The membrane
electrode assembly or MEA is sandwiched between two graphite plates (shaded on the left
half of the diagram) into which are etched �ow channels for carrying oxygen gas in the
cathode and hydrogen in the anode. We introduce a co-ordinate system in which x denotes
distance along the horizontal direction in the MEA, y is measured along the height of a
channel through the thickness of the MEA, and z denotes distance along the length of a �ow
channel.
Inside the channels, pressure gradients in the z-direction initiate the �ow of gases along the

channel, although these variations in z are quite slow. Furthermore, consumption of reactants
and generation of end products lead to gradients in component concentrations within the x-,
y-plane. At the heart of the fuel cell is the proton exchange membrane or PEM, composed
of a polymer material that is permeable to small, positively-charged ions. On each side of the
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Figure 1. A proton exchange membrane fuel cell and its component parts. On the left is a cross-sectional
view of the cell, showing the MEA sandwiched between the oxygen and hydrogen �ow channels. The
in-channel gas �ow is directed normal to the page. On the right is a close-up view of the MEA. The
reaction occurring at each electrode is listed on the far right, along with the �ow of electrons generated

when the anode and cathode are linked in an external circuit.

PEM is attached a layer of carbon �bre paper (the GDL) and the interface between the two
is loaded with a platinum catalyst that facilitates the reactions. The primary purposes of the
GDL are to provide a solid support for the catalyst particles and to distribute reactant gases
uniformly to the catalyst layer. The electric current in a fuel cell is derived from the two
reactions listed on the right of Figure 1. Hydrogen ions liberated at the anode migrate across
the PEM (driven by concentration gradients acting against the electrostatic forces) where they
react with oxygen gas at the cathode catalyst layer to produce water vapour. The GDL and
graphite plates are both conducting materials, and usable current is generated when the two
electrodes are connected together in an external circuit.

2.2. Governing equations

We will focus our attention on isothermal, multispecies convective and di�usive transport in
the GDL, extending the model derived in Reference [1] in three signi�cant ways:

• replacing the molar-averaged mixture velocity from Darcy’s Law with a mass-averaged
value. This is consistent with the mass transport literature (e.g. [9–12]).

• adding the full dynamics of a third, non-reactive gas component to more accurately
describe typical gas mixtures in fuel cells.

• using the Maxwell–Stefan equations for di�usive �uxes instead of Fick’s Law. These
equations are considered to be a more appropriate model for multicomponent di�u-
sion [13]. Indeed, Amali et al. [14] present numerical evidence that in some situa-
tions Fick’s Law underestimates the �uxes for multicomponent transport in porous media
by 5–10%.
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Figure 2. Dimensions of the model domain �: GDL thickness H , channel width Lc, separation distance
Ls, and total width L=2(Lc + Ls). The boundary components are identi�ed by Roman numerals I–IV.

For completeness, we summarize the derivation of the equations and boundary conditions be-
low, and refer the interested reader to [1] for a more detailed treatment including a discussion
of assumptions.
We consider each electrode in isolation and so our model domain is the two-dimensional

cross-section through the GDL, labeled � in Figure 2. The lower boundary of �, at y=0,
represents the interface between the GDL and either the solid graphite plate or an open,
gas-�lled, �ow channel. The upper boundary, at y=H , corresponds to the catalyst layer
separating the GDL and the PEM. Each channel has a width of Lc and is separated from
the next channel by a solid landing area of width Ls. The transport of ions and liquid
water within the membrane-electrode assembly as well as the convective �ow within the
gas channels will not be modelled here. The coupling of the GDL to the rest of the fuel
cell, including such e�ects as variation in reactant concentration along the length of the �ow
channel, non-uniformity of component concentrations in the channel, boundary layers at the
porous GDL-channel interface, and dissociation rates at the catalyst layer will be relegated to
boundary conditions.
The channel gases are typically humidi�ed, and so we take the mixtures to be composed of

three components: namely, humidi�ed air at the cathode (oxygen, water vapour and nitrogen)
and humidi�ed hydrogen at the anode (consisting of hydrogen, water vapour and carbon
dioxide). In addition to ignoring condensation and transport of heat and charge, we assume
further that the gas mixtures are ideal and isothermal. Operation of fuel cells is known to be
relatively independent of orientation and so we also neglect the force of gravity.
We now summarize the governing equations for the gas mixture, described by the individual

component concentrations. Here we generalize the Fickian model employed in Reference [1]
to ternary gas mixtures, following the development in References [9, 15]. We denote by C1
the reactant molar concentration, which is H2 on the anode side and O2 at the cathode. For
both electrodes, C2 refers to the water vapour molar concentration, while C3 represents the
remaining inert gas components. At the cathode, C3 denotes the concentration of N2, the major
inert component of the humidi�ed air input stream. The hydrogen gas used in fuel cells is
often generated by reforming more complex hydrocarbons and so at the anode, C3 denotes the
concentration of CO2, the major byproduct of many reforming processes. However, we will
eliminate C3 in favour of the total mixture concentration, C=C1 +C2 +C3. In fact, it will be
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convenient to write the mixture evolution equation in terms of the density, �=
∑

k �k , where
�k =MkCk and Mk is the molar mass of the kth component. The mixture concentration can
always be recovered from the density using Equation (7) below.
The equation of mass conservation for the gas mixture is

@�
@t
+∇ · (�U)=0 (1)

where U is the mass-averaged mixture velocity. The transport of individual components is
a�ected signi�cantly by inter-species di�usion, and so the conservation laws for the individual
components take the following form [9, 15]:

@Ck
@t

+∇ · (CkU + Jk)︸ ︷︷ ︸
Nk

=0 (2)

where Jk is the molar di�usive �ux (measured relative to the mass-averaged velocity), Nk =
CkU + Jk is the total (convective plus di�usive) molar �ux, and the index k=1 or 2 corre-
sponds to the kth component in the mixture.
The Maxwell–Stefan equations give the di�usive �ux, J?k , of component k relative to

the molar-averaged velocity in terms of the gradients of the component concentrations. The
equations take the form [

J?1

J?2

]
=−CD ·

[∇(C1=C)
∇(C2=C)

]
(3)

where the entries of the 2× 2 di�usivity matrix,

D=
[
D11 D12
D21 D22

]

are Fick di�usivities that depend on the component concentrations and binary gas di�usivities.
Details are provided in Appendix I. The �uxes J?k (relative to the molar-averaged velocity)
are related to Jk (relative to the mass-averaged velocity) via the following equation[

J1

J2

]
=S

[
J?1

J?2

]
where Sk‘= �k‘ − CkM‘

�

(
1− M3

M‘

)
(4)

are the entries of the 2× 2 matrix S for k; ‘=1; 2, a detail that is overlooked in several other
models that use a mass-averaged velocity [9, 5]. Details of this procedure for converting the
�uxes can be found in Reference [16].
In an ideal gas mixture, the pressure depends linearly on the mixture concentration (and

hence also the density) via the ideal gas law

P=CRT (5)

where R is the universal gas constant and T is the temperature. The �nal equation needed
to close the system is an expression for the mass-averaged velocity of the gas mixture, which
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is governed by Darcy’s law

U =− K
��

∇P (6)

where � is the viscosity of the mixture and the GDL material is characterized by the parameters
K (permeability) and � (porosity). When the material parameters are constant, this equation
can be rewritten using the ideal gas law (5) as U =−�∇C, where � :=KRT=��.
Notice that the mixture concentration, C, can be recovered from the density, component

concentrations and molar masses using the formula

C=
1
M3
[�+ (M3 −M1)C1 + (M3 −M2)C2] (7)

After substituting for U and Jk from (3)–(7), the three remaining equations (1)–(2) represent
a non-linear, fully parabolic system of partial di�erential equations governing the component
concentrations C1 and C2 and mixture density �.

2.3. Boundary conditions

The boundary of � consists of segments with four distinct types, labeled I–IV in Figure 2.
We list below the boundary conditions we will apply on each segment for ternary mixtures
we consider here. We refer the reader to Reference [1] for a more complete discussion of
these boundary conditions in the context of binary mixtures.

(I) The impermeable boundary at y=0 between the graphite plate and the GDL where
we impose no-�ow conditions on the vertical component of the �uxes:

J y1 = 0 (8a)

J y2 = 0 (8b)

Ny1 = 0 (8c)

Note that these conditions imply that both U · n̂=0 and Ny2 = 0
(II) The permeable boundary at y=0, where we take the mixture concentration (or equiv-

alently, the pressure) immediately inside the GDL to be the same as that in the
channel:

C= �C (9a)

That is, the total mixture concentration is uniform throughout the depth of the channel.
The other two conditions arise from taking the di�usive �ux of each component across
the channel=GDL interface to be proportional to the di�erence in concentrations on
either side

J yk = r
k
o( �Ck − Ck) (9b)

for k=1 or 2. Here �Ck is the depth-averaged component concentration in the channel,
and rko can be interpreted as a mass transfer coe�cient. An estimate for rko can be
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obtained from the Sherwood number, Sh= roL=D, where L is a characteristic length.
The Sherwood number is typically obtained experimentally and values are available
in the literature (see Reference [17] and the references therein).

(III) The permeable boundary at y=H , between the catalyst and GDL, where

J y1 = rHC1 (10a)

This is analogous to condition (9b), where we have assumed the catalytic reaction
to be immediate and irreversible so that the reactant concentration inside the catalyst
layer is negligible. In practice, the mass transfer coe�cient rH is tuned so as to match
net �ux to experimental values, and so is the only free parameter in this model. The
PEM is impermeable to gases and we take the vertical �ux of inert gas to be zero:

Ny3 = 0 (10b)

The �nal boundary condition on III arises from a return �ux of the end product
component (i.e. water vapour) which is proportional to that of the reactant

Ny2 = �N
y
1 (10c)

The parameter � is a return coe�cient that determines the direction and magnitude of
the second-component �ux. Since two H2O molecules are produced by the reaction
for every O2 molecule consumed, we take �=−2 at the cathode; at the anode on the
other hand, no water vapour is produced and so �=0.

(IV) The side boundaries at x=0 and x=L, where we assume that the solution is periodic
in x.

2.4. Parameter values

The geometrical parameters and gas properties are summarized in Table I. We take identical
channel geometry for both electrodes, while the transport coe�cients at the boundary di�er
from the anode to the cathode. The Maxwell–Stefan di�usion coe�cients �Dk‘ are in general
temperature-dependent, but in our isothermal model they are taken to be constant and equal to
the binary gas di�usivities. The calculation of the Fick di�usivities, Dk‘, from the Maxwell–
Stefan di�usivities is detailed in Appendix A. The humidi�ed gas streams within the �ow
channels are de�ned by the mixture concentration �C and mole fractions �Y k = �Ck= �C. The
anode stream contains 60% hydrogen and 30% carbon dioxide, while the cathode consists of
21% oxygen and 69% nitrogen; in both cases, the remaining 10% of the gas is water vapour.
The carbon �bre paper that makes up the GDL belongs to a class of �brous porous media,

including such materials as paper, textiles, �lters and insulation, that have been thoroughly
examined in the materials literature [18]. These �brous materials are quite distinct from what
is more commonly studied in the literature on groundwater �ow and reservoir simulations,
where the porous media are typically composed of either spheroidal grains (e.g. soil and
carbon �lters) or cylindrical pores in a solid matrix (e.g. rock). The major distinguishing
characteristics of �brous materials are their anisotropy and porosity, both of which can be quite
large in comparison to other porous media. For example, the GDL porosity is approximately
�=0:74 whereas for soil and rock, a more typical value is �=0:2−0:4. A larger porosity also
translates into a larger permeability. Typical values reported in experiments are summarized
in Table II.
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Table I. Parameter values (in cgs units) used for the GDL model.

Parameter Values

H GDL thickness (cm) 0:05
L domain width (cm) 1:0
Lc channel width (cm) 0:25
Ls separation width (cm) 0:25
K permeability (cm2) 10−8

� porosity 0:74
R gas constant (g cm2=mol s2 K) 8:31451× 107
T temperature (K) 346:15
nx × ny grid dimensions 34× 24

Anode Cathode
(H2=H2O=CO2) (O2=H2O=N2)

� viscosity (g=cm s) 2:01× 10−4 2:24× 10−4
�= KRT

�� convection parameter (cm5=s mol) 1:94× 106 1:74× 106
�Dk‘ Maxwell–Stefan di�usivities (cm2=s)

k; ‘=1; 2 0.457 0.124
1; 3 0.316 0.104
2; 3 0.089 0.123

Mk molar masses (g=mol) 2:0=18:0=44:0 32:0=18:0=28:0
�Y k = �Ck= �C channel mole fractions 0:60=0:10=0:30 0:21=0:10=0:69
�C channel concentration (mol=cm3) 3:475× 10−5 3:475× 10−5
��=

∑
k Mk �Ck channel density (g=cm3) 5:629× 10−4 9:673× 10−4

rko bottom transfer rates (cm=s) 10:0 10:0
rH top transfer rate (cm=s) 0:2 0:8
� return coe�cient 0:0 −2:0

Table II. Comparison of porous media parameters for carbon �bre paper and sand/soil/rock.

GDL Soil=rock

Porosity (�) 0.70–0.80 0.10–0.40
Permeability (K; cm2) 10−7–10−9 10−7–10−13

Length scale (H; cm) 0:05 101–103

P�eclet number (Pe=� �C=D) 3× 103 3× 10−1
Derived time scales:
Convective (H 2=� �C) 3× 10−6 3× 104
Di�usive (H 2=D) 9× 10−3 9× 103

Sources: [19, 4, 11, 3, 12, 6].

Because the �bres making up the GDL are oriented so that their axes lie primarily in the
plane of the paper, the material is anisotropic and hence the transport coe�cients are di�erent
in the through-plane and in-plane directions. The permeability and di�usivity are tensor quan-
tities, which can be taken to be diagonal [18]: K=diag(Kx; Ky) and D k‘=diag(Dxk‘; D

y
k‘). Al-

ternatively, these coe�cients can be rewritten in the form K=K diag(�K ; 1) and D k‘=Dk‘ diag
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(�D; 1), where the through-plane transport coe�cients serve as reference values, and �K=Kx=Ky

and �D=Dxk‘=D
y
k‘ are anisotropy ratios. Since �ow along the axis of the �bres is less hindered

than that across �bre cross-sections, the in-plane coe�cients are signi�cantly greater than their
through-plane counterparts, so that both �K and �D are greater than one in magnitude.
Perhaps the most important aspect of the GDL, which sets it apart from most other porous

media, is the very small spatial dimensions under consideration, since the thickness of the GDL
is 0:05cm or less. Typical distances in other porous media, particularly groundwater transport,
are on the order of tens or hundreds of centimeters; this disparity in length scales can lead to
very signi�cant di�erences in solution behavior. A clear measure of the quantitative di�erence
between various �ows is the P�eclet number, Pe=� �C=D, which is the ratio of convective to
di�usive components of mass transport. For the typical parameter values listed in Table II,
Pe is four orders of magnitude larger for gas �ow in the GDL than for that in soil and
rock. Another interpretation of the P�eclet number is as a ratio of time scales corresponding
to convection and di�usion, and these are also listed in the table for comparison purposes.

3. THE FINITE VOLUME METHOD

3.1. Spatial discretization

We have chosen to employ a spatial discretization based on �nite volumes (also known as
control volumes), an approach which is very commonly used for problems involving conser-
vation laws [20]. For this method, the conservation properties of the original equations are
passed along to their discrete analogues. The importance of conservative schemes has already
been recognized for the simulation of mass transport in fuel cells and other related problems
(e.g. [9, 21, 3]).
Our rectangular domain is divided into a regular, nx × ny grid as pictured in Figure 3.

Density and concentration unknowns are de�ned as averages over each cell, and located at

y ∆

x∆

i,j+1

i+1,ji,ji-1,j

i,j-1i-1,j-1

V

U
k{C  ,�,P}

Figure 3. A picture of the grid used to discretize the problem, with the placement of unknowns indicated
in a cell: ‘×’ for P, � and Ck ; ‘◦’ for V and J y; and ‘ ’ for U and J x. The dashed line encloses

those points which are labeled with the subscript i; j.
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cell centres. The �ux and velocity unknowns, on the other hand, are de�ned as edge
averages, and are located at the centre of each cell edge (see Figure 3). The grid spacings
	x=L=nx and 	y=H=ny are taken to be constant in both directions. We use a method-
of-lines approach and discretize �rst in the spatial variables so that the unknown solution
components remain continuous functions of time. The semi-discrete unknowns at cell centres
are identi�ed by

�i; j(t); Ck; i; j(t) for i=1; : : : ; nx; j=1; : : : ; ny and k=1; 2

at horizontal cell edges by

Ui; j(t); J xk; i; j(t) for i=0; : : : ; nx; j=1; : : : ; ny and k=1; 2

and at vertical cell edges by

Vi; j(t); J
y
k; i; j(t) for i=1; : : : ; nx; j=0; : : : ; ny and k=1; 2

The discrete versions of (1)–(5) are obtained by integrating the equations over each cell i; j
to obtain

d�i; j
dt

+
1
	x
(�̂i; jUi; j − �̂i−1; jUi−1; j) +

1
	y

(�̂◦i; jVi; j − �̂◦i; j−1Vi; j−1)=0 (11a)

dCk; i; j
dt

+
1
	x
(Ĉk; i; jUi; j − Ĉk; i−1; jUi−1; j + J xk; i; j − J xk; i−1; j)

+
1
	y

(Ĉ
◦
k; i; jVi; j − Ĉ

◦
k; i; j−1Vi; j−1 + J

y
k; i; j − J yk; i; j−1)=0 (11b)

J xk; i; j=−S
x
k;1D

x
k;1

	x
Ĉi; j

(
C1; i+1; j
Ci+1; j

− C1; i; j
Ci; j

)
− Sxk;2D

x
k;2

	x
Ĉi; j

(
C2; i+1; j
Ci+1; j

− C2; i; j
Ci; j

)
(11c)

J yk; i; j=−S
y
k;1D

y
k;1

	y
Ĉ

◦
i; j

(
C1; i; j+1
Ci; j+1

− C1; i; j
Ci; j

)
− Syk;2D

y
k;2

	y
Ĉ

◦
i; j

(
C2; i; j+1
Ci; j+1

− C2; i; j
Ci; j

)
(11d)

Ui; j=−�K�
	x

(Ci+1; j − Ci; j) (11e)

Vi; j=− �
	y

(Ci; j+1 − Ci; j) (11f)

For the velocity calculations in Equations (11e) and (11f), the mixture concentration Ci; j is
obtained from Ck; i; j and �i; j using Equation (7).
We will assume for the present that porosity, viscosity, permeability, and di�usivities are

constant. However, the method can easily be generalized to the case where the material
parameters and transport coe�cients depend on position, or the solution itself.
For a cell-centred quantity qi; j (where q=C or �), q̂i; j denotes an averaged value located

at a cell edge. The superscript ‘ ’ or ‘ ◦’ denotes whether the average value is located on a
vertical edge or a horizontal edge respectively (refer to Figure 3). For example, the density
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i=1 i=2 ... i=nx-1 i=nx

x x xx

xxx

xxx

xx

x

x x

x

xxx

xxxxx

x x x xj=ny+1

j=1

j=0

j=2

...

j=ny x

x

Figure 4. A diagram showing the relationship between the actual grid and the ghost cells introduced
for satisfying discrete boundary conditions.

on vertical edges (labelled ‘ ’) is given by the second-order average �̂i; j=
1
2(�i; j+�i+1; j). The

expressions for �̂◦, Ĉk , Ĉ
◦
k , Ĉ , and Ĉ

◦
are de�ned in a similar manner.

3.2. Discrete boundary conditions

The discrete periodic conditions along the vertical boundaries, x=0 and x=L, are very
straightforward to implement. The di�erence formulas in Equation (11), when evaluated at
cells adjacent to the top and bottom boundaries, involve points that lie outside the physical
domain. In order to remedy this situation, we de�ne a horizontal row of ‘ghost cells’ on each
edge of the domain (see Figure 4) inside which are de�ned ghost values �i;0 and �i; ny+1
(and similarly for Ck). The discrete versions of the boundary conditions can then be written
without di�culty using our staggered �nite volume grid, thereby allowing the solution values
located in ghost cells to be determined in terms of interior solution values. As a result, the
discrete boundary conditions on the top and bottom of the domain represent a total of 2nx
systems of non-linear algebraic equations. The system arising at each boundary point consists
of 3 coupled equations to be solved for the unknown ghost values in that cell. We employ
a non-linear solver to solve each of these systems, which we describe in more detail in the
next section.

3.3. Time discretization and sti�ness

The semi-discrete Equation (11) represent a system of 3nxny ODEs for the unknown functions
�i; j(t), C1; i; j(t), and C2; i; j(t). In order to solve this system numerically, we need to discretize
the equations in time. Our approach will be to start with some initial distribution of the
concentrations, and then step the solution to steady state.
The most straightforward method would be to replace the time derivatives with a forward

di�erence approximation, thereby obtaining a fully explicit method. Unfortunately, this simple
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approach is impractical, because it requires an extremely small time step for the numerical
solution to remain stable. This severe restriction on time step can be explained using the well-
known stability criterion for a centred, second order, explicit discretization of the convection–
di�usion equation (see Reference [3], for example). In our porous �ow model, the convective
terms in the equations actually take a similar form to the di�usive terms, involving second
derivatives of the solution. Therefore, when we linearize the equations of motion and apply
the standard stability condition for centred schemes, we �nd that the time step restriction
reduces to

	t6min
(
1
D
;
1
� �C
;

1
� �C �Y k

)(
2

(	x)2
+

2
(	y)2

)−1

which encompasses restrictions from both di�usion (1=D) and convection (1=� �C). For a typical
choice of parameters listed in Table I, this translates into the condition 	t/ 2× 10−5 for the
di�usion terms and 	t/ 3× 10−9 for the convective terms. If one considers that a steady
state solution is typically reached by time t=0:5 s, it is clear that a total of 108–109 equally
spaced time steps are required for this simple explicit computation to remain stable.
From Table II and the stability analysis above, it is clear that the system possesses two

disparate time scales. In the paper [1], the e�ect of these two time scales on the solution
behavior was analysed in detail. We showed that initially the total mixture concentration (or
equivalently the pressure) relaxes to a quasi-steady state on the convective time scale. On
the slower di�usive scale, �ow velocities are relatively small and di�usive e�ects generate
gradients in mole fractions which in turn adiabatically drive the mixture concentration along a
family of quasi-steady states to the �nal steady solution. For computations employing explicit
time stepping, it is this convergence of the mixture concentration onto the manifold of quasi-
steady states that forces the time step to be so small.
Our model equations therefore comprise a sti� system for which an explicit time discretiza-

tion is inappropriate, and hence an implicit method with some form of variable time-step selec-
tion must be used. Because the equations and boundary conditions are highly non-linear, our
approach was to use an existing numerical solver for integrating non-linear systems of ODEs,
namely DASSL [22], which uses the backward di�erentiation formulas of orders 1–5. This code
is designed to solve general di�erential-algebraic systems of the form G(t; y; dy=dt)=0 using
a time step selection strategy that controls the error relative to user-speci�ed error tolerances.
We used the built-in �nite di�erence approximation to the Jacobian matrix, took advantage
of the banded structure of the Jacobian, and used absolute and relative error tolerances of
RTOL= ATOL= 1e-6.
Another potential advantage to using DASSL is its very general framework that allows the

time-independent discrete boundary conditions to be included as algebraic constraints, which
can then be solved simultaneously with the di�erential equations. However, all of our attempts
to use DASSL to solve both the equations and boundary conditions resulted in very poor
convergence, perhaps due to scaling problems with the boundary conditions. As a result, we
have instead solved the boundary conditions separately within each iteration using the non-
linear solver DNSQ (which is a modi�cation of Powell’s hybrid method, implemented in the
SLATEC library [23]). The convergence using this approach is quite rapid, requiring on average
only about 5 function evaluations per call to DNSQ. In practice, a steady-state computation
on a 34× 24 grid requires on the order of 1000 residual evaluations and half that number
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of Jacobian calculations. This translates into approximately 1–2 min of CPU time on a Dell
Precision Workstation (733MHz Pentium III processor, 256 Mb RAM, with a SPECCFP2000
benchmark rating of 242, see http:==www.spec.org=osg=cpu2000=results=).

4. NUMERICAL RESULTS

4.1. Convergence study

In order to verify that our numerical scheme is second order accurate in space, we performed a
convergence study using computations on a sequence of grids of size 16× 12, 32× 24, 64× 48
and 128× 96. The physical parameters were chosen to correspond to the cathode in Table I,
and the solution was computed up to time 5:0 s. We based our error measure on the reactant
mole fraction, and computed di�erences between the solution values on successive grids. Let
Y (m−1) and Y (m) denote the solutions on grid level m−1 and the next �ner grid m with twice
as many points in both co-ordinate directions (where Y (1) is computed on the 16× 12 grid).
If the di�erence between solutions on successive grids is given as E(m) = ‖Y (m)−Y (m−1)‖p (in
the discrete p-norm) then the rate of convergence is approximated by

R(m)≈ log2

(
E(m−1)

E(m)

)
In Table III we summarize the successive di�erences and convergence rates for two choices of
norm (the max-norm and discrete 2-norm) and the rate in both cases approaches the expected
value of 2.

4.2. Base case

As our base case we take isotropic transport coe�cients (i.e. �D= �K =1) and zero pressure
di�erence between adjacent channels. We focus for the present on the cathode, and use the
gas mixtures and transport parameters listed in Table I. Under the assumption that all of the
reactant gas which reaches the catalyst layer is immediately consumed, the reactant �ux is
proportional to the current density in the cell. We use the vertical component of the total
reactant �ux at the top boundary, Ny1 |y=H , as a performance indicator, since this quantity is
related to the current produced by the cell. We take the membrane transport coe�cient rH
so that the computed solution has a current density of 1:0 A=cm2 for our base case, but then
keep rH �xed for comparative runs.

Table III. Convergence rates for cathode calculations on a sequence of re�ned grids.

Max-norm 2-norm
m nx × ny E(m)∞ R(m) E(m)2 R(m)

1 16× 12 — — — —
2 32× 24 3:45× 10−4 — 1:16× 10−3 —
3 64× 48 8:83× 10−5 1.97 2:91× 10−4 1.99
4 128× 96 2:14× 10−5 2.05 7:32× 10−5 2.01
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Figure 5. Reactant mole fraction (left) and total reactant �ux at the
membrane (right) for the cathode ‘base case’.

Figure 5 depicts a surface plot of the reactant mole fraction Y1 alongside the pro�le of
reactant �ux, Ny1 |y=H . It is evident that in the absence of pressure gradients, the solution is
symmetric about the centreline x=L=2. The mole fraction plot shows that the O2 gas con-
centration decreases from channel to membrane as the reactant is consumed. There are two
very well-de�ned peaks in the reactant �ux immediately above the channels which indicate
thus regions of enhanced reaction. The variation in �ux across the membrane is quite signif-
icant, which may indicate that those portions of the catalyst lying above the landing area are
underutilized. The �ux computed using the two-component (Fickian) model is included for
comparison. Here, the water vapour and nitrogen are lumped together into a single component
with appropriately-averaged molar mass. The two-component model overestimates the average
�ux by not including the additional ‘interspecies friction’ present in the three-component case.
The �ow of the gas mixture and reactant are evident in the vector plots of velocity U and

reactant �ux N1 in Figure 6. The return �ux of water vapour generated at the catalyst layer is
clearly indicated in the velocity plot, where partial pressure gradients due to the water vapour
cause a net downward �ux of vapour. However, the velocity remains small in comparison
to the di�usive �ux at steady state, resulting in a net reactant �ux that is directed vertically
upwards throughout the domain.

4.3. Transient calculations and sti�ness

The solution plots in Figure 7 demonstrate the dominance of convection over very short time
scales and the role of di�usion in the subsequent convergence to steady state. In this �gure,
point values of the mixture concentration C and oxygen mole fraction Y1 (evaluated at mid-
channel, just inside the lower boundary) are plotted against time on a log scale. The initial
convection-dominated �ow drives the upswing in the C curve near t=10−5 s, since gradients
in mixture concentration (or equivalently pressure) give rise to the gas velocity. The mole
fraction, on the other hand, remains virtually constant until t=10−3 s, at which time the
di�usive e�ects take hold and lead to much slower variations in both C and Y1.
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Figure 7. Plots of mid-channel point values of C and Y1 (on the left) and time step (on the right).

The time step corresponding to the same computation is displayed in the plot on the right
of Figure 7. The 	t chosen by DASSL is initially required to be very small (less than 10−9) but
then increases linearly with time on a log–log scale. During the di�usive transient (between
times 10−3 and 10−1), all solution components experience signi�cant variation; consequently,
the time step during this interval remains nearly constant as evidenced by the clustering of
points on the 	t plot. We conclude that the adaptive time step selection procedure is very
e�ective at resolving changes in the solution on the widely varying convective and di�usive
time scales, relaxing the time step restriction at later times once the solution has reached
steady state.
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Figure 8. Vector plots of the total �ux for two values of the channel pressure drop.

4.4. Pressure di�erences between channels

Flow channels in a Ballard fuel cell typically follow a serpentine path that doubles back
and forth across the graphite plate. There is a continuous drop in the gas pressure along
the length of each �ow channel; as a result, a pressure di�erence between adjacent channels
of 	P=104 dyne=cm2 is not uncommon. In fact, Yi and Nguyen [6] report that even for
relatively small pressure drops of 2.5% or less (at an operating pressure of 106 dyne=cm2),
fuel cells with interdigitated �ow �elds exhibited a performance improvement of between 60
and 100%.
Due to the dominance of convection, even a small pressure di�erence introduced between

adjacent �ow channels breaks the symmetry of the solution and alters �ow behavior sig-
ni�cantly. Figure 8 shows two plots of the computed oxygen �ux for corresponding to
	P=1× 104 and 4× 104 dyne=cm2 (i.e. 	P=P=0:01 and 0:04). There is a very clear right-
to-left cross-�ow of oxygen, and although some of the reactant exits the domain through the
corners of the left channel, the overall �ux of oxygen remains directed upward through the
centre of the left channel. This is consistent with the numerical results obtained in Reference
[6] for a 2D steady-state model of mass transport in PEM fuel cells.
Changes in the �ux pro�le at the catalyst layer as a result of these pressure di�erences are

illustrated in Figure 9. While the cross-�ow engendered by pressure di�erences appears from
the vector plots to direct reactant away from the upper boundary, the opposite is true. In fact,
the enhanced transport due to cross-�ow actually increases the reactant �ux. If we take the
average �ux at the top boundary as a measure of performance, then pressure di�erences clearly
have the bene�cial impact of levelling out the peaks in the pro�les, while also increasing the
transport of reactant gas to the catalyst.
Figure 10 demonstrates the relationship between the horizontal cross-�ux and membrane

�ux as the pressure di�erence between channels is increased. The curve marked with ‘◦’
denotes the average of the vertical reactant �ux component across the top boundary, while
the second curve gives the ratio between this averaged top �ux and the average value of the
horizontal �ux along the centreline (i.e. Nx1 |x= L=2). As the channel pressure drop is increased,
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Figure 10. Variations in the membrane reactant �ux and the
midline-to-top �ux ratio versus pressure drop.

the horizontal reactant �ow clearly begins to dominate the vertical �ux component. However,
the reactant �ux at the membrane–catalyst interface is not adversely a�ected by the cross-�ow.

4.5. Anisotropy and inhomogeneity in the GDL

Fibrous porous materials have been studied in considerable detail both experimentally [24]
and theoretically (for regular arrays of cylindrical �bres [18]). These works have shown that
in materials such as the GDL, the permeability tensor is anisotropic and has components in
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Figure 11. Variation in the membrane reactant �ux for various levels of anisotropy in the transport
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corresponds to 	P=P=0:001 which, while non-zero, is still small in comparison with the simulations
in Section 4.4. The isotropic results for 	P=P=0 and 0:01 are shown as dotted lines for comparison.

the in-plane and through-plane directions that di�er by up to a factor of 20, or 16�K620 in
our notation.
Much less attention has been paid to the e�ect of anisotropy on the di�usivity of a gas in

porous media. We appeal to the work of Koch and Brady [25] who derive expressions for
the various directional di�usivities in �brous beds of the form �D=(1− �+ �2)=(1−2�+2�2),
where � denotes the void fraction. Consequently, their anisotropy ratio for di�usivity satis�es
16�D6 3

2 , with the maximum value occurring at �= 1
2 . However, Chernyakov [26] uses an

alternate derivation that yields signi�cantly larger values of the anisotropy ratio, and so for
this work we have chosen values lying in the range 16�D64.
We performed several simulations in which the through-plane permeability and di�usiv-

ities (Ky and Dyk‘) were �xed, while the in-plane coe�cients were varied. On the left of
Figure 11 are shown several plots of the membrane reactant �ux as �D is increased from 1
to 4 and �K is held at 1. Increasing the in-plane di�usivity clearly evens out the �ux pro�le
while at the same time increasing the average membrane �ux and enhancing performance.
On the right of Figure 11 are a similar set of plots with a pressure di�erence between the

two channels of 	P=P=0:001. Comparing to the results from Section 4.4, where there was
almost no change in �ux pro�les from the base case using this relatively small value 	P, it is
evident that the anisotropy of the GDL may have even more impact on situations where there
is cross-�ow. To investigate the e�ect of anisotropy in the permeability, we have included
in Figure 11 the results of simulations with �K =1 and 10 (with �D=4 �xed). While there
is some change in the �ux pro�les, the sensitivity to permeability is much less pronounced,
pointing to the clear dominance of di�usion over convection at steady state in the parameter
regime under which fuel cells operate.
Another source of non-uniformity in the GDL is the spatial variation in porous structure

that arises due to compression of the electrode above the solid landing areas. The graphite
plates on either side of the MEA are bolted together under signi�cant pressure that helps to
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seal the fuel cell assembly against gas leaks. Compression is known to signi�cantly alter the
porous structure of the electrode, thereby a�ecting fuel cell performance [27]. We are able to
capture this e�ect by allowing the porosity to vary as a function of x. Using a composition of
functions of the form sin2n(x) that are appropriately scaled and translated, we have constructed
a function (plotted in Figure 12) which has the e�ect of varying the porosity continuously
between values of �min (over each landing area) and �max (over the channels).
In this next set of simulations, we take the transport coe�cients to be isotropic, and let the

porosity vary in space as just described. In isotropic porous media, the dependence of the dif-
fusion coe�cient on porosity is often approximated using the empirical formula De� = �1:5Dgas

(attributed to Bruggeman [28]), which relates the e�ective di�usivity in the porous medium to
that of a free gas. While this approximation is strictly valid only for porous media consisting
of spherical grains, we apply it in the current isotropic situation to illuminate the possible
e�ects of a spatially-varying porosity. The right hand plot in Figure 12 compares the com-
puted reactant �ux pro�les for several values of the ratio �min=�max with �max �xed at 0.74.
Compressing the GDL reduces the porosity (and hence also the di�usion coe�cients) over the
landing area, which in turn decreases the overall �ux of reactant to the catalyst layer, particu-
larly above the landing areas. Compression has a detrimental impact on fuel cell performance,
leading to increased variation of reactant �ux.

4.6. Comparison of anode and cathode

The reactant �ux in the anode is much less of a limiting factor in fuel cell performance due
in part to the large di�usivity of hydrogen gas in comparison with oxygen. We choose a
base case for the anode by selecting the membrane mass transport coe�cient rH =0:2 to yield
a steady state current density of 1:0 amp=cm2. The resulting membrane �ux pro�le pictured
in Figure 13 (for 	P=0) shows the characteristic peaks above the channels. However, the
variation in �ux is 20% compared with 200% for the cathode (see Figure 5). The reactant
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Figure 13. Reactant mole fraction (left) and total reactant �ux at the membrane (right) for the anode.

gas is thus much more evenly distributed across the anode catalyst layer, which is desirable
in terms of optimizing performance.
The anode is also much less sensitive to pressure di�erences between successive channels, as

illustrated by the curve labelled 	P=4× 104 in Figure 13. The e�ect of a non-zero pressure
di�erence is similar, in that peaks and valleys in the �ux pro�le are smoothed out, and the
average �ux is increased. However, the relative changes for the anode are much smaller than
for the cathode.

5. CONCLUSIONS

The gas di�usion layer is an essential component of the proton exchange membrane fuel cell,
and limitations due to mass transport in the GDL are known to be signi�cant. However, most
of the models appearing in the fuel cell literature have focused on the complex coupling
between heat, mass, and charge transport between other components of the fuel cell, and in
the process have simpli�ed aspects of the GDL by ignoring convection or assuming mass
transport coe�cients are constant and isotropic.
In this work, we have presented a model of mass transport in the GDL which includes as

much detail as possible of the physics and material properties. The interspecies di�usion is
governed by the Maxwell–Stefan equations, while convection in the porous layer is modelled
by Darcy’s law. The resulting system of non-linear di�usion equations is solved using a �nite
volume spatial discretization in combination with implicit backward di�erentiation formulas
in time. Because of the non-linear coupling introduced through the boundary conditions, a
careful discretization of the boundary conditions is necessary in order to maintain second
order accuracy throughout the entire computational domain. Numerical experiments con�rm
that the discretization is second order accurate in space and that the implicit time-stepping
algorithm solves this sti� problem e�ciently.
Our numerical simulations demonstrate that material properties of the �brous GDL such

as anisotropy and spatial inhomogeneities due to stack compression can have a signi�cant
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in�uence on the reactant gas transport, and hence also on fuel cell performance. Small pres-
sure di�erences between neighboring channels can also in�uence performance by generating
through-plane cross-�ow that may locally increase performance by facilitating reactant trans-
port to the catalyst layer and improving catalyst utilization.
The originality of this work derives not only from our mathematical model, but also from

its use of the numerical solution algorithm and the engineering conclusions we draw from
it. On the modelling side, we have focused on correctly incorporating the Maxwell–Stefan
equations for multicomponent di�usion and deriving consistent boundary conditions. In this
respect, our work di�ers signi�cantly from other related fuel cell models that have appeared
in the literature. Secondly, we have taken a very careful approach to discretizing the system,
and particularly the non-linear boundary conditions, so that the resulting numerical method
is fully second order accurate in space. Finally, we investigated the sensitivity of reactant
transport to GDL anisotropy and cross-channel pressure di�erences which have received little
or no attention in the fuel cell literature.
The mass transport model we have presented is an ideal formulation to begin addressing

other aspects of the physics, such as heat and water transport, which we expect will also be
a�ected signi�cantly by the anisotropy and inhomogeneity in the GDL material. In the future,
we will including these added e�ects in a more complete fuel cell model that should improve
on the predictive property of mathematical models in the fuel cell community. We also plan
to extend the model to a three-dimensional geometry, taking into account variations along-
the-channel, which will require more e�cient numerical solution procedures and particularly
the development of e�ective preconditioning strategies.

APPENDIX A

A.1. Multicomponent Maxwell–Stefan model

The Maxwell–Stefan equations for the general case of nc¿2 components take the form [16]

−∇
(
Ck
C

)
=

nc∑
‘= 1
‘ �=k

C‘J?k − CkJ?‘
C2 �Dk‘

(A1)

The Maxwell–Stefan di�usion coe�cients, denoted as �Dk‘, are determined from the mixture
mole fractions and the binary di�usion coe�cients, reported in chemical tables for mixtures
consisting of only two gases. Equation (12) represents a system of (nc − 1) equations that
can be inverted to obtain the �uxes in terms of concentration gradients

[J?k ]=−CD ·
[
∇
(
Ck
C

)]
(A2)

where

[J?k ]=
[
J?1
J?2

]

and D=(Dk‘) is an (nc − 1)× (nc − 1) matrix.
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The Fick di�usivities, Dk‘, are in general composition-dependent, and come from inverting
(A1), along with the identity

∑nc
k = 1 J

?
k =0. In the case of a ternary gas (nc = 3), the Fick

di�usivities are given by the following [16, p. 80]:

D11= �D13(Y1 �D23 + (1− Y1) �D12)=S
D12=Y1 �D23( �D13 − �D12)=S

D21=Y2 �D13( �D23 − �D12)=S

D22= �D23(Y2 �D13 + (1− Y2) �D12)=S
where Yk =Ck=C are the mole fractions and S=Y1 �D23+Y2 �D13+Y3 �D12. Notice that Equation
(13) reduces to the standard binary di�usion model (or Fick’s law) when the number of
components nc = 2.
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